废水的可生化性(Biodegradability),也称废水的生物可降解性,即废水中污染物被生物降解的难易程度,是废水的重要特性之一。
废水存在可生化性差异的主要原因在于废水所含的物中,除一些易被微生物分解、利用外,还含有一些不易被微生物降解、甚至对微生物的生长产生抑制作用,这些物质的生物降解性质以及在废水中的相对含量决定了该种废水采用生物法处理(通常指好氧生物处理)的可行性及难易程度[1-5]。在特定情况下,废水的可生化性除了体现废水中污染物能否可以被利用以及被利用的程度外,还反映了处理过程中微生物对污染物的利用速度:一旦微生物的分解利用速度过慢,导致处理过程所需时间过长,在实际的废水工程中很难实现,因此,一般也认为该种废水的可生化性不高[6]。
确定处理对象废水的可生化性,对于废水处理方法的选择、确定生化处理工段进水量、负荷等重要工艺参数具有重要的意义。国内外对于可生化性的判定方法根据采用的判定参数大致可以分为好氧呼吸参量法、微生物生理指标法、模拟实验法以及综合模型法等。
1好氧呼吸参量法
微生物对污染物的好氧降解过程中,除COD(Chemical Oxygen Demand化学需氧量)、BOD(Biological Oxygen Demand生化需氧量)等水质指标的变化外,同时伴随着O2的消耗和CO2的生成。
好氧呼吸参量法是就是利用上述事实,通过测定COD、BOD等水质指标的变化以及呼吸代谢过程中的O2或CO2含量(或消耗、生成速率)的变化来确定某种污染物(或废水)可生化性的判定方法。根据所采用的水质指标,主要可以分为:水质指标评价法、微生物呼吸曲线法、CO2生成量测定法。
1.1水质指标评价法
BOD5/CODCr比值法是经典、也是目前为常用的一种评价废水可生化性的水质指标评价法[7]。
BOD是指有氧条件下好氧微生物分解利用废水中污染物进行新陈代谢过程中所消耗的氧量,我们通常是将BOD5(五天生化需氧量)直接代表废水中可生物降解的那部分物。CODCr是指利用化学氧化剂(K2Cr2O7)彻底氧化废水中污染物过程中所消耗氧的量,通常将CODCr代表废水中污染物的总量。
传统观点认为BOD5/CODCr,即B/C比值体现了废水中可生物降解的污染物占污染物总量的比例,从而可以用该值来评价废水在好氧条件下的微生物可降解性。目前普遍认为,BOD/COD<0.3的废水属于难生物降解废水,在进行必要的预处理之前不易采用好氧生物处理;而BOD/COD>0.3的废水属于可生物降解废水。该比值越高,表明废水采用好氧生物处理所达到的效果越好[8,9,10]。
在各种污染指标中,总碳(TOC)、总需氧量(TOD)等指标与COD相比,能够更为快速地通过仪器测定,且测定过程更加可靠,可以更加准确地反映出废水中污染物的含量。随着近几年来上述指标测定方法的发展、改进,国外多采用BOD /TOD及BOD /TOC的比值作为废水可生化性判定指标,并给出了一系列的标准[11]。但无论BOD/COD、BOD/TOD或者BOD/TOC,方法的主要原理都是通过测定可生物降解的物(BOD)占总物(COD、TOD或TOC)的比例来判定废水可生化性的。
该种判定方法的主要优点在于:BOD、COD等水质指标的意义已被广泛了解和接受,且测定方法成熟,所需仪器简单。
但该判定方法也存在明显不足,导致该种方法在应用过程中有较大的局限性。首先,BOD本身是一个经验参数,必须在严格一致的测试条件下才能比较它们的重现性和可比性。测试条件的任何偏差都将导不稳定的测试结果,稀释过程、分析者的经验以及接种材料的变化都可以导致BOD测试的较大误差,同时,我们又很难找到一个标准接种材料来检验所接种的微生物究竟带来多大的误差,也不知道究竟哪一个测量值更接近于真值。实际上,不同实验室对同一水样的BOD测试的结果重现性很差,其原因可能在于稀释水的制备过程或不同实验室具体操作差异所带来的误差[12];其次,国内外学者对各类工业废水和城市污水的BOD与COD数值做了大量的测定工作